Codimension growth of two-dimensional non-associative algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-associative algebras associated to Poisson algebras

Poisson algebras are usually defined as structures with two operations, a commutative associative one and an anti-commutative one that satisfies the Jacobi identity. These operations are tied up by a distributive law, the Leibniz rule. We present Poisson algebras as algebras with one operation, which enables us to study them as part of non-associative algebras. We study the algebraic and cohomo...

متن کامل

Simple Associative Conformal Algebras of Linear Growth

We describe simple finitely generated associative conformal algebras of Gel’fand–Kirillov dimension one.

متن کامل

Inner Derivations of Non-associative Algebras

In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras, and for associative algebras with no absolute right (left) divisor of zero. I t is well known that all derivations of semi-simple associative or Lie algebras over a field of characteristic zero are inner. Recent correspondence with N. Jacobson has ...

متن کامل

On the Codimension Growth of G-graded Algebras

Let W be an associative PI affine algebra over a field F of characteristic zero. Suppose W is G-graded where G is a finite group. Let exp(W ) and exp(We) denote the codimension growth of W and of the identity component We, respectively. We prove: exp(W ) ≤ |G| exp(We). This inequality had been conjectured by Bahturin and Zaicev.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08673-x